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Abstract

Two different time domain formulations of integrating commonly used frequency-domain unsteady aerodynamic

models based on a modal approach with full order finite element models for structures with geometric nonlinearities are

presented. Both approaches are tailored to flight vehicle configurations where geometric stiffness effects are important

but where deformations are moderate, flow is attached, and linear unsteady aerodynamic modeling is adequate, such as

low aspect ratio wings or joined-wing and strut-braced wings at small to moderate angles of attack. Results obtained

using the two approaches are compared using both planar and non-planar wing configurations. Sub-critical and post-

flutter speeds are considered. It is demonstrated that the two methods lead to the same steady solution for the sub-

critical case after the transients subside. It is also shown that the two methods predict the amplitude and frequency of

limit cycle oscillation (when present) with the same accuracy.

r 2009 Elsevier Ltd. All rights reserved.
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1. Introduction

Nonlinear aeroelastic problems involving geometric structural nonlinearities (Hodges, 2006; Friedmann and Hodges,

2003; Tang and Dowell, 1996; Patil and Hodges, 2004) have been the subject of research and development for years,

motivated by such aeroelastic systems as helicopter rotors, high-aspect-ratio gliders, and human-powered vehicles.

More recently, emerging interest in high-altitude long-endurance (HALE) configurations as well as unconventional

configurations such as joined wings (JW) and strut-braced wings has led to a surge in new analysis/computational tools

development for such configurations and an effort to understand their aeroelastic behavior and corresponding design

and certification issues (Livne and Weisshaar, 2003; Patil et al., 2000; Sulaeman et al., 2002; Livne, 2001; Lee and Chen,

2004). Computational Fluid Dynamics/Computational Structural Mechanics (CFD/CSM) simulation technology is

now becoming powerful and efficient enough to begin making its impact on the actual design and certification of flight

vehicles (Geuzaine et al., 2003). While general in its formulation, allowing the capture in simulation of both structural

and aerodynamic nonlinear behavior, CFD/CSM model preparation and computation are still expensive, requiring
e front matter r 2009 Elsevier Ltd. All rights reserved.
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Nomenclature

a0, a1, a2, a3 parameters used in the time integration

(Eq. (41))

a4, a5, a6, a7 parameters used in the time integration

(Eq. (41))

Afull generalized aerodynamic matrix corre-

sponding to the full order structural finite

element model

A generalized aerodynamic matrix corre-

sponding to the reduced order aerodynamic

model

A0, A1, A2 Roger matrices of the reduced order

aerodynamic model

A2þi Roger matrices (lag contributions) of the

reduced order aerodynamic model

A%

0 , A
%

1 , A
%

2 Roger matrices after the transformation

to the full order is applied

A%

2þi Roger matrices (lag contributions) after the

transformation to the full order is applied

A% full order aerodynamic matrix defined in Eq.

(9)

b semi-chord used in the definition of the

reduced frequency

Bi; B%

i combinations of lag terms (Eq. (27))

CD damping matrix

C i, C%

i combinations of full order lag matrices (Eq.

(27))

E elastic modulus

F int vector containing the internal forces

h thickness of the plate

i index

j complex unit

k ratio between o and V1
k% reduced frequency

k%

max maximum reduced frequency used in the

Roger fit

½Ke
G�

shell
TOTAL geometric stiffness matrix at element level

K1 system
Ti aero

first lag aerodynamic tangent matrix (see

Eqs. (35) and (36))

K2 system
Ti aero

second lag aerodynamic tangent matrix (see

Eqs. (35) and (36))

K%

Taero
aerodynamic tangent matrix after the static

condensation is performed (see Eq. (39))

KT structural tangent matrix (see Eq. (36))

KT eff effective stiffness matrix (see Eqs. (35) and

(36))

K system
Tdyn

dynamic contribution to the effective stiff-

ness matrix (see Eq. (36))

K system
Taero

aerodynamic contribution to the effective

stiffness matrix (see Eq. (36))

Lunsteady unsteady aerodynamic force vector

M mass matrix

n iteration ID within a time step

N time step parameter assigned to define the size of the

time step (see Eq. (40))

N lag number of lag terms used in the Roger

procedure

Pext vector containing the non-aerodynamic

forces

Pi aero lag aerodynamic force vector (see Eqs. (35)

and (36))

Peff effective force vector (see Eqs. (35) and (36))

Pdyn dynamic contribution to the effective force

vector (see Eq. (36))

Paero aerodynamic contribution to the effective

force vector (see Eq. (36))

P%

aero aerodynamic force vector after the static

condensation is performed (see Eq. (39))

q vector containing the generalized coordi-

nates

R number of shape vectors

s Laplace variable

t time

T transformation matrix

u displacement vector referred to the coordi-

nates at the beginning of the current

iteration

U cumulative displacement vector

ux displacement in the x direction

uy displacement in the y direction

uz displacement in the z direction

V1 freestream velocity

x; y; z coordinate system

xpert vector containing the coordinates of the

nodes of the perturbed configuration

xpert augmented vector obtained from xpert

xa¼0 vector containing the coordinates of the

nodes of the reference configuration

xa¼0 augmented vector obtained from xa¼0

t½%� quantity [%] calculated at time t
tþDt½%� quantity [%] calculated at time tþ Dt
0½%� quantity [%] calculated at time t ¼ 0 (initial

condition)

½%�n quantity [%] calculated at iteration n of a

time step
_½%� first time derivative of quantity [%]
€½%� second time derivative of quantity [%]

Greek symbols

a angle of attack, Newmark parameter

(a ¼ 1=4)
bi generic lag term

bi generic lag term multiplied by the ratio

between the speed and the semi-chord

d Newmark parameter (d ¼ 1=2)
Dt time step
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zi viscous damping ratio

li lag state variable

r1 air density

r material density

t dummy variable used in the calculation of

the time domain integrals

u Poisson’s ratio

W matrix containing the shape vectors

o circular frequency

Subscript

nd auxiliary quantity used in the time domain

simulation (see Eqs. (32) and (34))
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significant resources. Practically all of the nonlinear aeroelastic simulation approaches to HALE, gliders, and human-

powered vehicles to date are based on nonlinear beam models integrated with various levels of unsteady aerodynamic

modeling, from essentially two-D strip methods, through panel, and up to CFD methods.

There is a class of nonlinear aeroelastic configurations where nonlinear beam models cannot capture the nonlinear

structural behavior, especially localized behavior, in sufficient detail. The aerodynamic behavior of such configurations,

however, can be adequately captured by linear unsteady aerodynamic models of the types used for aeroelastic design

and certification of practically all modern airplanes, namely, lifting surface and other panel methods as well as

linearized CFD models about reference configuration shapes. Such configurations include joined-wings and strut-

braced wings operating at high subsonic speeds and attached linear flow, or supersonic configurations in subsonic and

supersonic flight, using joined and strut wing concepts together with low-aspect-ratio lifting surfaces (Tang et al., 1999;

Attar et al., 2005). Additional cases for which nonlinear structural modeling coupled with linear aerodynamics is

adequate involve local structural damage that can lead to local buckling, approach to buckling, or any damage-related

geometrically nonlinear behavior of spar and rib areas, cover skins, or substructure joint areas.

Linear steady and unsteady aerodynamic modeling methods of the doublet lattice type (e.g., Doublet Lattice Method

(DLM)) or a variety of panel methods for lifting surface/body configurations in subsonic, supersonic, and even

hypersonic flow have been the backbone of aeroelastic analysis, design, and certification for years and are still widely

used in industry, which accumulated significant experience in their utilization (Rodden et al., 1998). Such methods

require model preparation efforts and computer resources that are much less demanding than emerging CFD-based

unsteady aerodynamic methods. In a previous paper (Demasi and Livne, 2009, 2007a) we presented one technique for

coupling standard linear aerodynamic models with nonlinear structural finite element (FE) models. The aim of the

present paper is to present an alternative formulation and study advantages, disadvantages, and the performance of the

two formulations. In the new approach, integration of convolution integrals in the time domain is not required as

before. Instead, time domain aerodynamic approximations of unsteady behavior are now cast in a form that leads,

together with the equations for structural states, to second order aerodynamic equations. The resulting system of

nonlinear second order equations, structural and aerodynamic, can now be solved directly using the Newton–Raphson

and Newmark (Newmark, 1959) methods. Both planar and non-planar configurations are used.
2. Displacement vectors, cumulative displacement vectors, and linear unsteady aerodynamics

The displacement and cumulative displacement vectors are key quantities used in the derivations presented in this

paper. The displacement vector u is relative to the configuration at the beginning of the current iteration (within a time

step for the dynamic case and within a load step for the static case) in a Newton–Raphson procedure. The vector which

contains the coordinates of all the structural nodes of the wing system is x. The coordinates define the configuration

before the displacement vector is added.

An Updated Lagrangian Formulation (Levy and Gal, 2003; Levy and Spillers, 1995; Gal and Levy, 2005) is used here

and so the coordinates of the nodes are continuously updated during the iteration process.

The quantity xa¼0 represents the coordinate vector of all structural nodes at a reference aerodynamic configuration

with zero angle of attack. Aerodynamic panels are defined based on the geometry of that reference configurations and

structural motion away from the reference configuration is assumed small. This simplifies aerodynamic modeling in this

work, since aerodynamic influence coefficients can be determined once with respect to the reference aerodynamic

configuration.

The cumulative displacement vector is designated by U and is defined as the summation of all the displacements that

have occurred during the iteration process up to the current iteration. Basically, the coordinates at a particular load

level are obtained by adding the vector of the coordinates in the undeformed configuration ðxa¼0Þ to the translational

part of all the displacements that the structure was subjected to all the previous load levels.
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The Doublet Lattice Method is used here as a representative linear unsteady aerodynamic method. Rodden’s

‘‘quartic’’ Doublet Lattice Method (Rodden et al., 1998) is used.
3. Nonlinear structural model

The geometrically nonlinear structural model for thin-plate aerospace structures used here is created using flat

triangular elements (Levy and Gal, 2003; Levy and Spillers, 1995; Gal and Levy, 2005). A tangent stiffness matrix is

built for given structural shape and internal stress distributions by combining linear elastic and geometric stiffness

matrices. The geometric stiffness matrix is derived by applying a load perturbation method, when the gradient (with

respect to the coordinates) of the nodal force vector (when the stresses are considered fixed) is calculated. Four matrices

are added to generate the geometric stiffness matrix (Levy and Gal, 2003; Levy and Spillers, 1995; Gal and Levy, 2005):

½Ke
G�

shell
TOTAL ¼ ½K

e
G�

mem
IP þ ½K e

G�
plate
IP þ ½K e

G�
mem
OUT þ ½K

e
G�

plate
OUT. (1)

The matrix ½Ke
G�

mem
IP , representing the in-plane contribution of a plane stress constant strain triangular element (CST), is

obtained taking the gradient of the nodal forces. The matrix ½Ke
G�

plate
IP , representing the in-plane contribution of a flat

triangular plate bending element, is calculated for a triangular element based on the Discrete Kirchhoff Theory (DKT).

The matrix ½Ke
G�

mem
OUT, representing the out-of-plane contribution of a membrane triangular element, is calculated

considering the change of a vector force which is subjected to a small rigid rotation vector x. A similar approach is used

in order to calculate the matrix ½K e
G�

plate
OUT which represents the out-of-plane contribution of the DKT plate element.

Rigid body motion is removed based on Levy and Gal (2003) and unbalanced loads are calculated as the nonlinear

analysis (Newton–Raphson) progresses.
4. Modal-based linear unsteady aerodynamic model and full order nonlinear FEM model: full order deformation and its

modal approximation

Order reduction of the structural system by using a known set of deformation shape vectors (which can be for

example the natural modes of the structure or other sets of assigned shapes) is a major challenge when geometrical

nonlinearities are considered. A modal basis has to be able to capture stress distributions as well as deformation shapes.

The fact that the nodes are moving and can move significantly also adds to difficulty. Modal base structural order

reduction methods can perform poorly when local structural behavior becomes important. When areas of important

local action are known a priori (as in the cases of substructure synthesis, concentrated loads, etc.) special modal base

vectors which can capture local action accurately in such areas can be used. But in the case of an aeroelastic system with

strong geometric nonlinearity effects, location of local action of importance, such as approach of local buckling, is not

known a priori, and, hence, reduced order models based on some general reduced basis vectors will lead to major

simulation inaccuracies. The method adopted here is to use the full order structural finite element model in order to

capture the nonlinear structural behavior, and to couple it with a modally reduced aerodynamic model. Such coupling

covers cases in which the aerodynamic forces can be well captured by a modal approach, assuming that even with

geometric structural nonlinearity effects, the overall deformation of the structure is still global in nature. Once local

displacements become aerodynamically important, say, when skin panels may ‘‘pop up’’ locally due to local buckling,

the modal approach has to be abandoned for the aerodynamics also, and a full order aerodynamic approach, with

sufficient surface mesh refinement, has to be used. Such a full order approach for both structural and aerodynamic

modeling will be discussed in a subsequent paper.

Details of the original formulation and the first method used for coupling nonlinear FE models with modal linear

unsteady aerodynamic models can be found in Demasi and Livne (2009, 2007a). A brief summary is presented here

before progression to the description of the second method.

Consider a set W of R known shape vectors. This set can be formed by using natural modes of vibration, ‘‘fictitious

mass’’ modes, Ritz vectors, or combinations of those (Demasi and Livne, 2007b). For the set W the generalized

aerodynamic matrices can be obtained by using any available linear unsteady aerodynamic simulation package (DLM,

ZAERO, etc.). Such packages work in the frequency domain. That is, they provide generalized aerodynamic forces on a

harmonically oscillating configuration at given reduced frequencies. Suppose we approximate the structural

displacements by using the basis W and the vector q of generalized coordinates as follows:

u � Wq. (2)
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The modal approximation is focused on capturing by superposition of modes that part of the displacements that is

important aerodynamically. By using a Least Square Method (LSM) it is possible to find the necessary generalized

displacements as a functions of the full order displacement vector. In particular, the relation between the generalized

displacements and the full order displacements is

q ¼ Tu. (3)

Now, the generalized aerodynamic matrices, based on the set of modes used, have to be transformed to correspond to

the full order structural model. This is achieved by using work/energy conservation, and the transformation matrix is

then used as will be shown in Eq. (5).

Different methods can be introduced (Demasi and Livne, 2009, 2007a, 2006) to generate W and with ‘‘fictitious

masses’’ they can lead to shapes that allow modeling refinement in desired areas or selected degrees of freedom (dofs)

through the use of a modified mass matrix for the calculation of the modes. The LSM can be applied to the component

of the displacements perpendicular to the wing only or to all the displacements when the modal to full order match is

carried out. In particular, four modal basis were examined as follows.
(i)
 Modal Basis 1. The basis W is built by using natural modes. However, the lumped mass matrix used to calculate the

modes is modified by reducing the terms related to the ux and uy degrees of freedom by 99%. With this reduction

the modes have mainly out-of-plane components in the low frequency range and the basis is more tailored to

approximate the out-of-plane displacement uz. The least squares method is performed only on the component uz.
(ii)
 Modal Basis 2. The basis W is built by using natural modes. The mass matrix is not modified. The LSM is

performed only on the component uz.
(iii)
 Modal Basis 3. The basis W is built by using natural modes and the mass matrix is modified as in the case of Modal

Basis 1. The LSM is performed on all the translational displacements ux, uy and uz.
(iv)
 Modal Basis 4. The basis W is built by using natural modes and the mass matrix is not modified as in the case of

Modal Basis 2. The LSM is performed on all the translational displacements ux, uy and uz. This is the method used

for the most general 3-D configurations.
5. Coupling method I

The Fourier transform of the unsteady aerodynamic force corresponding to the full order structural finite element

model is

LunsteadyðjoÞ ¼ 1
2
r1V2

1AfullðjoÞ �UðjoÞ, (4)

where U is the cumulative displacement vector and is a function of jo because of the time dependence of nodal

positions. Cumulative displacements are used because in the present formulation the aerodynamic surface mesh is

generated for the reference undeformed aerodynamic configuration, assuming that structural deformation with respect

to this mesh is small enough to be within the domain of accuracy of linear aerodynamic predictions. For the unsteady

case we use the same transformation from generalized coordinates to full order finite element coordinates as in the

steady case (Demasi and Livne, 2009, 2007a) using the same transformation matrix T. We have

AfullðjoÞ ¼ TTAðjoÞT. (5)

The matrixAðjoÞ generated by an unsteady aerodynamic linear potential code is a non-rational function of the reduced

frequency k%
¼ ob=V1: A ¼ Aðjk%

Þ. In the DLM code used for the present studies reduced frequencies were

calculated based on a reference semi-chord of 1. That is, as k ¼ o=V1. A Roger procedure (Roger, 1977; Brase and

Eversman, 1988) is used to obtain a rational function approximation of the generalized unsteady loads along the

frequency axis. In particular, the rational function approximation is

Aðjk%
Þ ¼ A0 þ ðjk

%
ÞA1 þ ðjk

%
Þ
2A2 þ

XN lag

i¼1

jk%

jk%
þ bi

A2þi. (6)

Recalling the definition of reduced frequency k%, defining bi ¼ ðV1=bÞbi, simplifying and using analytical continuation

to expand from the imaginary axis to the Laplace domain adjacent to it jo! s, it is possible to write the aerodynamic
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generalized matrix in the Laplace domain, where s is the Laplace variable. With the help of the definitions

A%

0¼
: 1
2
r1V2

1TTA0T; A%

1¼
: 1
2
r1bV1TTA1T,

A%

2¼
: 1
2
r1b2TTA2T; A%

2þi¼
: 1
2
r1V2

1TTA2þiT i ¼ 1;N lag, (7)

the unsteady aerodynamic forces in the Laplace domain can be expressed as

LunsteadyðsÞ ¼ A%

0 þ sA%

1 þ s2A%

2 þ
XN lag

i¼1

s

sþ bi

A%

2þi

" #
UðsÞ. (8)

Using the Inverse Laplace Transform (ILT) expressions in the time domain can be obtained. To transform the lag terms

to the time domain convolution integrals are used (Brase and Eversman, 1988). The following definitions are now

introduced:

A%
¼
:A%

0 þ
XN lag

i¼1

A%

2þi, (9)

UðtÞ¼
: tU ;

t _U¼
: d½UðtÞ�

dt
;

t €U¼
: d

2
½UðtÞ�

dt2
; tLunsteady¼

:
LunsteadyðtÞ. (10)

The time domain aerodynamic forces have the following form:

tLunsteady ¼ A%
� tU þA%

1 �
t _U þA%

2 �
t €U �

XN lag

i¼1

biA%

2þi

Z t

0

tU e�biðt�tÞ dt. (11)

This expression for the unsteady aerodynamic loads is consistent with expressions for steady state loads (Demasi and

Livne, 2009, 2007a). It involves convolution integrals that have to be evaluated to time t.
5.1. Newmark time integration and Newton–Raphson method with unsteady aerodynamics.

The equation that has to be solved at each iteration of the Newton–Raphson procedure for coupled non-aerodynamic

and aerodynamic loads is (Demasi and Livne, 2009, 2007a; Bathe, 1996):

M �
tþDt €U

n
þ CD �

tþDt _U
n
þ tþDtKn

T �
tþDtun ¼ tþDtPext þ

tþDtLn
unsteady �

tþDtF ðn�1Þint , (12)

where tþDtLn
unsteady is the nth realization of the aerodynamic loads at time tþ Dt and tþDtPext are the external non-

aerodynamic loads. Note that only the structural stiffness matrix varies with time, while the structural mass and

damping matrices are constant. The explicit form of the aerodynamic force vector is (see Eq. (11))

tþDtLn
unsteady ¼ A%

� tþDtUn þA%

1 �
tþDt _U

n
þA%

2 �
tþDt €U

n
�
XN lag

i¼1

biA%

2þi

Z tþDt

0

tUne�biðtþDt�tÞ dt. (13)

An important problem is the calculation of the convolution integrals in the time domain (Demasi and Livne, 2009,

2007a). A discussion of this subject is omitted here for brevity, and the reader is referred to the references for details. CD

is the full order damping matrix. In this paper a viscous damping model is used as follows. The reference generalized

damping matrix is built considering a set of modes that are in general not coincident with the basis used to define the

aerodynamic generalized matrices. This is done to allow direct measurement of damping ratios for a set of natural

modes of a structure. Then, the reference generalized damping matrix is expanded to be of the same order of the

generalized aerodynamic matrices. This operation is done by considering as a new set of modes the same modes used

to define the generalized aerodynamic matrices and the transformation matrix T and by applying the least squares

method to move from one set of modes to another. The generalized damping matrix is thus obtained for the same

modal coordinates as the generalized aerodynamic matrix. Finally, the full order damping matrix CD is obtained from

the generalized damping matrix by using a transformation similar to Eq. (5).
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5.2. Newmark’s method and the iterative procedure for method I

The coupled second order nonlinear Eqs. (12) are integrated in time using the Newmark method. The adopted

procedure: a mix of Newmark’s integration for the structural equations and time integration of the convolution

integrals is described in Demasi and Livne (2009, 2007a).

5.3. Initial conditions

To allow simulation of system response to initial perturbations initial conditions must be defined. The unsteady

aerodynamic forces in the time domain are given in expression (11). If this formula is written for the initial instant t ¼ 0,

and setting the integrals of the lag terms to zero:

0Lunsteady ¼ A%
� 0U þA%

1 �
0 _U þA%

2 �
0 €U . (14)

When the speed of structural nodal motions is assumed zero at t ¼ 0, but allowing for initial structural acceleration or

displacement,

0 _U ¼ 0. (15)

The aerodynamic force vector is then

0Lunsteady ¼ A%
� 0U þA%

2 �
0 €U . (16)

The lag terms are still present in the aerodynamic stiffness matrix A%. A perturbed initial configuration xpert, is

assumed next, for example a configuration with a small angle of attack. Thus,

xpertaxa¼0. (17)

Based on this assumption, the vectors xpert and xa¼0 are augmented by adding zeros to purely rotational degrees of

freedom of the structural FE model nodes (input shapes are defined by displacements only), and the vectors xpert and

xa¼0 are obtained, respectively. The cumulative displacement at the initial instant is according to the following formula:

0U ¼ xpert � xa¼0. (18)

To find initial accelerations the equilibrium equation is written at the initial instant t ¼ 0 (with structural nodal

speeds zero). Then (see Eq. (12))

M �
0 €U ¼ 0Pext þ

0Lunsteady �
0F int. (19)

Assuming an initial condition that is stress free, no internal forces are present and therefore with the help of Eq. (16),

M �
0 €U ¼ 0Pext þA%

� 0U þA%

2 �
0 €U (20)

from which the initial value for the nodal accelerations can be obtained:

0 €U ¼ ½M �A%

2 �
�1 � ½0Pext þA%

� 0U �. (21)

The initial conditions accepted in the present formulation can, then, account for initial deformation perturbation as well

as initial force (acceleration) inputs to the system. Even when non-aerodynamic loads ð0Pext ¼ 0Þ are absent, nonzero

initial accelerations due to aerodynamic initial loads can be accounted for. The time step procedure (Newmark +

Newton–Raphson) can now be started with the initial conditions (15), (18) and (21) and with the initial coordinate

vector xpert.
6. Coupled full order structural and reduced order modal aerodynamic models: method II

This new approach, presented here for the first time, avoids the need for the convolution time domain integrals of the

type seen in Eq. (11).
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The discussion can begin with Eq. (8). With N lag, the number of lag terms, even, the aerodynamic forces in the

Laplace domain can be rearranged as follows:

LunsteadyðsÞ ¼ ½A%

0 þ sA%

1 þ s2A%

2 �UðsÞ þ
XN lag=2

i¼1

s

sþ b2i�1

A%

2þð2i�1Þ þ
s

sþ b2i

A%

2þ2i

� �" #
UðsÞ (22)

or

LunsteadyðsÞ ¼ ½A%

0 þ sA%

1 þ s2A%

2 �UðsÞ þ
XN lag=2

i¼1

sðsþ b2iÞA%

1þ2i þ sðsþ b2i�1ÞA%

2þ2i

ðsþ b2i�1Þðsþ b2iÞ

" #
UðsÞ. (23)

The idea is to group the Roger lag terms in a way that will lead to aerodynamic equations in the time domain that will

be of second order like the structural equations. The following definition is introduced:

sðsþ b2iÞA%

1þ2i þ sðsþ b2i�1ÞA%

2þ2i

ðsþ b2i�1Þðsþ b2iÞ
�UðsÞ ¼ liðsÞ. (24)

liðsÞ is named lag state variable. There are N lag=2 such lag state variables. The aerodynamic forces (Eq. (23)) are then

rewritten in the form

LunsteadyðsÞ ¼ ½A%

0 þ sA%

1 þ s2A%

2 �UðsÞ þ
XN lag=2

i¼1

liðsÞ. (25)

The lag state variables have to satisfy Eq. (24) which can be cast in a more convenient form:

s2li � s2Ci �U þ sBili � sC%

i �U þ B%

i li ¼ 0, (26)

where

Bi ¼ b2i�1 þ b2i; B%

i ¼ b2i�1b2i,

Ci ¼ A%

1þ2i þA%

2þ2i; C%

i ¼ b2iA%

1þ2i þ b2i�1A%

2þ2i: (27)

The inverse Laplace transform can now be applied to both Eqs. (26) and (25):

tLunsteady ¼ A%

2 �
t €U þA%

1 �
t _U þA%

0 �
tU þ

PN lag=2

i¼1

tli;

t €li � Ci �
t €U þ Bi

t _li � C%

i �
t _U þ B%

i
tli ¼ 0:

8>><
>>: (28)

6.1. Newmark time integration and Newton–Raphson iterations in the case of method II

With both unsteady non-aerodynamic and aerodynamic loads and Eq. (12) the aerodynamic loads and lag state

variables at time tþ Dt are obtained from Eq. (28) as follows:

tþDtLn
unsteady ¼ A%

0 �
tþDtUn þA%

1 �
tþDt _U

n
þA%

2 �
tþDt €U

n
þ
PN lag=2

i¼1

tþDtln
i ;

tþDt €ln
i � Ci �

tþDt €U
n
þ Bi

tþDt _ln
i � C%

i �
tþDt _U

n
þ B%

i
tþDtln

i ¼ 0;

8>><
>>: (29)

with

i ¼ 1;N lag=2. (30)

For Newmark’s method the following quantities are defined:

tþDtUn ¼ tþDtUn
nd þ

tþDtun;
tþDt _U

n
¼

tþDt _U
n

nd þ a7a0
tþDtun;

tþDt €U
n
¼

tþDt €U
n

nd þ a0
tþDtun, (31)

where

tþDtUn
nd ¼

tþDtU ðn�1Þ,

tþDt _U
n

nd ¼
t _U þ a6

t €U þ a7a0
tþDtU ðn�1Þ � a7a0

tU � a7a2
t _U � a7a3

t €U ,

tþDt €U
n

nd ¼ a0
tþDtU ðn�1Þ � a0

tU � a2
t _U � a3

t €U , (32)
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and similarly for the lag state variables:

tþDt €ln
i ¼

tþDt €ln
i nd þ a0

tþDtln
i ;

tþDt _ln
i ¼

tþDt _ln
i nd þ a7a0

tþDtln
i , (33)

where

tþDt €ln
i nd ¼ �a0

tli � a2
t _li � a3

t €li,

tþDt _ln
i nd ¼

t _li þ a6
t €li � a7a0

tli � a7a2
t _li � a7a3

t €li. (34)

Relations (31)–(34) can be substituted into Eqs. (29) and (12). It can be demonstrated that at each iteration N lag=2
equations coupled with the system of ‘‘structural’’ equations have to be solved. In more detail:

tþDtKn
T eff �

tþDtun
zfflffl}|fflffl{unknown

¼
PN lag=2

i¼1

tþDtln
i

zfflfflffl}|fflfflffl{unknown

þtþDtPn
eff �

tþDtF ðn�1Þint ;

KT
1 system
i aero � tþDtln

i

zfflffl}|fflffl{unknown

þKT
2 system
i aero � tþDtun

zfflffl}|fflffl{unknown

¼ tþDtPn
i aero; i ¼ 1;N lag=2;

8>>>>><
>>>>>:

(35)

where

KT
1 system
i aero ¼ ½a0 þ a7a0Bi þ B%

i �I ¼ OiI ; KT
2 system
i aero ¼ �a0Ci � a7a0C%

i ,

tþDtPn
i aero ¼ �

tþDt €ln
i nd þ Ci �

tþDt €U
n

nd � Bi �
tþDt _ln

i nd þ C%

i �
tþDt _U

n

nd,

tþDtKn
T eff ¼

tþDtKn
T þ KT

system
dyn þ KT

system
aero ,

KT
system
dyn ¼ a0M þ a7a0CD; KT

system
aero ¼ �A

%

0 � a7a0A%

1 � a0A%

2 ,

tþDtPn
eff ¼

tþDtPext þ
tþDtPn

dyn þ
tþDtPn

aero;
tþDtPn

dyn ¼ �M �
tþDt €U

n

nd � CD �
tþDt _U

n

nd,

tþDtPn
aero ¼ A%

0 �
tþDtUn

nd þA%

1 �
tþDt _U

n

nd þA%

2 �
tþDt €U

n

nd. (36)

Matrix equations condensation can now be applied to the system of Eqs. (35) with the lag state variables expressed as

a function of the displacements as follows:

tþDtln
i ¼

1

Oi

½�KT
2 system
i aero � tþDtun þ tþDtPn

i aero�; i ¼ 1;N lag=2. (37)

Substituting into the first expression of Eq. (35):

½tþDtKn
T eff þKT

%

aero� �
tþDtun ¼ tþDtP% n

aero þ
tþDtPn

eff �
tþDtF ðn�1Þint , (38)

where

KT
%

aero ¼
XN lag=2

i¼1

1

Oi

�KT
2 system
i aero

� �
; tþDtP% n

aero ¼
XN lag=2

i¼1

1

Oi

� tþDtPn
i aero

� �
. (39)

Once the displacement tþDtun is found from Eq. (38), the lag state variables tþDtln
i can be obtained from Eq. (37) and

the iterations can continue.

Method II presented here is completely different from Method I discussed in earlier publications. There is a

restriction here to have an even number of lag terms, but calculating convolution integrals in the time domain is not

necessary, and the constraint of even numbers of lag terms does not raise any problem or place any significant

limitation.

CD is the full order damping matrix and it is obtained as in Method I as explained above.

6.2. Time integration of coupled full order structural and linear modal unsteady aerodynamic equations: the full procedure

Steps of the Newmark (Bathe, 1996) method used here can now be summarized.

6.2.1. Initial calculations

First, a maximum size step is chosen by using

Dt ¼
Tmin

N time step
¼

2pb

k%

maxV1N time step
; (40)
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k%

max ¼ omaxb=V1 is the maximum reduced frequency used for the Roger fit; N time step is a number chosen by user. If

this number is larger the accuracy is improved. CPU time increases considerably, however, when N time step is large. The

following quantities are calculated next:

a0 ¼
1

aðDtÞ2
; a1 ¼

d
aDt

; a2 ¼
1

aDt
; a3 ¼

1

2a
� 1,

a4 ¼
d
a
� 1; a5 ¼

Dt

2

d
a
� 2

� �
; a6 ¼ Dtð1� dÞ; a7 ¼ dDt, (41)

in which d ¼ 1
2
and a ¼ 1

4
.

The parameters used in the derivation of the aerodynamic contribution are:

bi ¼
V1

b
bi; Bi ¼ b2i�1 þ b2i; B%

i ¼ b2i�1b2i; a0 þ a7a0Bi þ B%

i ¼ Oi,

Ci ¼ A%

1þ2i þA%

2þ2i; C%

i ¼ b2iA%

1þ2i þ b2i�1A%

2þ2i; KT
2 system
i aero ¼ �a0Ci � a7a0C%

i . (42)

For calculation of the dynamic contribution KT
system
dyn to the effective tangent matrix (this contribution is constant):

KT
system
dyn ¼ þa0M þ a7a0CD. (43)

Contribution to the tangent matrix due to the aerodynamic part:

KT
system
aero ¼ �A

%

0 � a7a0A%

1 � a0A%

2 . (44)

Because of the linearity of the unsteady aerodynamic loads, this contribution does not depend on the load step or

iteration and it is calculated once.

The contribution of the lag terms is

KT
%

aero ¼
XN lag=2

i¼1

1

Oi

�KT
2 system
i aero

� �
. (45)

This contribution also does not depend on the load step or iteration and is calculated once.

6.2.2. Time step calculations

For calculation of the external loads tþDtPext using the assigned temporal law notice that each time step defines a

variation of the parameters over the interval ½t; tþ Dt�. The auxiliary quantities tþDtUn
nd,

tþDt _U
n

nd and
tþDt €U

n

nd are

calculated by using Eq. (32). This operation is performed at each iteration. If the first iteration of the current time step is

considered, then the previous realization of the cumulative displacement will be tþDtU ðn�1Þ ¼ tU . In case the very first

iteration is considered, then all the quantities are coincident with the initial (if different than zero) values. For example,
tU ¼ 0U .

The time-step-dependent quantities tþDt _ln
i nd and tþDt €ln

i nd are calculated by using Eq. (34). In the definition of the

variables tþDt _ln
i nd and tþDt €ln

i nd the superscript n was used as if they were dependent on the iteration, but this symbol is

used only for consistency with the other variables. As a matter of fact, tþDt _ln
i nd and tþDt €ln

i nd are calculated only at each

time step and not at each iteration.

Next, the loads tþDtPn
dyn;

tþDtPn
aero;

tþDtPn
eff ;

tþDtPn
i aero and tþDtP% n

aero are calculated by using Eqs. (36) and (39). The

external loads tþDtPext change only when another time step is considered. Regarding the calculation of the effective

tangent matrix, Eqs. (36) and (39) are used. The following linear system is then solved:

½tþDtKn
T eff þKT

%

aero� �
tþDtun ¼ tþDtP% n

i aero þ
tþDtPn

eff �
tþDtFðn�1Þint . (46)

The displacements tþDtun are used to update the coordinates of the nodes. Using the displacements tþDtun the lag state

variables are calculated:

tþDtln
i ¼

1

Oi

½�KT
2 system
i aero � tþDtun þ tþDtPn

i aero�; i ¼ 1;N lag=2. (47)

The cumulative displacement vector is updated for the next iteration:

tþDtUn ¼ tþDtU ðn�1Þ þ tþDtun. (48)
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The internal forces tþDtFn
int are calculated for the next iteration. Another iteration is performed unless the convergence

criteria is satisfied. If so, the iterative process in the time step is considered complete and the vectors are updated:

tþDtU ¼ tþDtUn ¼ tþDtUn
nd þ

tþDtUn;
tþDt _U ¼

tþDt _U
n
¼

tþDt _U
n

nd þ a7a0
tþDtun,

tþDt €U ¼
tþDt €U

n
¼

tþDt €U
n

nd þ a0
tþDtun; tþDtli ¼

tþDtln
i ,

tþDt _li ¼
tþDt _ln

i ¼
tþDt _ln

i nd þ a7a0
tþDtln

i ;
tþDt €li ¼

tþDt €ln
i ¼

tþDt €ln
i nd þ a0

tþDtln
i . (49)

The process restarts with the updating of the time: t! tþ Dt.

6.3. Initial conditions

The unsteady aerodynamic forces in the time domain are given in expression (28). It is assumed that

0li ¼
0 _li ¼ 0, (50)

and the aerodynamic loads at the instant t ¼ 0 can be written as

0Lunsteady ¼ A%

2 �
0 €U þA%

1 �
0 _U þA%

0 �
0U . (51)

As in Method I, initial structural nodal speeds are taken to be zero:

0 _U ¼ 0. (52)

Thus, the aerodynamic force vector is

0Lunsteady ¼ A%

2 �
0 €U þA%

0 �
0U . (53)

Also

0U ¼ xpert � xa¼0. (54)

To find the acceleration, the equilibrium equation written at the initial instant t ¼ 0 is considered with structural

nodal speeds zero. From Eq. (12), then

M �
0 €U ¼ 0Pext þ

0Lunsteady �
0F int. (55)

When the initial condition is a stress free one and no internal forces are present, then, with the help of Eq. (53),

M �
0 €U ¼ 0Pext þA%

0 �
0U þA%

2 �
0 €U (56)

from which the initial value for the acceleration can be obtained:

0 €U ¼ M �A%

2

� ��1
� ½0Pext þA%

0 �
0U �. (57)

As in Method I, even in absence of non-aerodynamic loads (0Pext ¼ 0) there can be nonzero accelerations. Initial

conditions for the lag state variables have to be also defined. In Eq. (50) the lag state variables and their first time

derivative are assumed to be zero. If in the second expression of Eq. (28) at time t ¼ 0 0 _li ¼
0 _li ¼ 0 and

0 _U ¼ 0, then

0 €li � Ci �
0 €U ¼ 0; i ¼ 1;N lag=2, (58)

or using Eq. (57),

0 €li ¼ Ci � ½M �A%

2 �
�1 � ½0Pext þA%

0 �
0U �; i ¼ 1;N lag=2. (59)

The time integration procedure (NewmarkþNewton2Raphson) can now be started with the initial conditions (52),

(54), (57) and (59) and with the initial coordinate vector xpert.
7. Results

We consider the unsteady solution using the proposed methods.
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7.1. First model: the delta wing

This is a well known model (Attar et al., 2005) used to capture geometric nonlinearity effects in low-aspect-ratio

plate-like wings. Both numerical and experimental results are available for this model. Data for the mathematical model

are as follows: 16 wing segments; 318 structural nodes, 552 structural (triangular) elements, 252 DLM aerodynamic

panels, Mach ¼ 0. The angle of attack is a ¼ 1�.

Reduced frequencies (defined as k%
¼ ob=V1, where b is half-root chord) used to generate a Roger model are: 0,

0.02, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1, 1.2, 1.4, 1.6, 1.8, 2. The selected lag terms are:

b1 ¼ 0:25, b2 ¼ 0:5, b3 ¼ 0:9, b4 ¼ 1:5, b5 ¼ 1:7, b6 ¼ 2:0. The time step has to be sufficiently small for good accuracy

of the results. However, it does not have to be too small to avoid excessive CPU time. N time step is a parameter assigned
Fig. 1. The delta wing.

Fig. 2. Joined Wing model derived from the delta wing.
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by the user (see Eq. (40)) and is used to calculate the size of the time step. Previous studies (Demasi and Livne, 2009,

2007a) have shown that it is sufficient to use N time step ¼ 8 and this will be adopted in all the presented cases.

7.2. Second model: the joined wing

The wing shown in Fig. 1 is modified and a Joined Wing model is created (Demasi and Livne, 2009, 2007a). The

geometry of this wing is shown in Fig. 2. The wing is divided into 18 wing segments. The FE model contains 518 nodes

and 872 triangular elements. The aerodynamic model contains 696 DLM panels. In all cases Mach ¼ 0. As for the delta

wing, N time step ¼ 8 in all cases. The angle of attack is a ¼ 1� on both the upper and lower wings. The angle of attack of

the trapezoidal surface representing the joint is zero. This model is introduced to study the 3-D joined-wing-like effects

and is directly obtained from the delta wing model. The goal is to analyze the conceptual differences between planar and

non-planar cases. No practical applications of this configuration are implied.

7.3. Dynamic aeroelasticity of the delta wing: method II compared with method I

The flutter speed of this wing has been calculated numerically and experimentally validated; it is 24.5m/s. Fig. 3

shows that at a sub-critical speed of 21m/s excitation of the system at t ¼ 0 leads to a transient that decays to converge

to the steady aeroelastic solution (Demasi and Livne, 2009, 2007a) obtained by solving the nonlinear static aeroelastic

problem. Twenty modes are used to generate the unsteady aerodynamic force matrices, and those 20� 20 matrices and

their resulting time domain Roger approximants are integrated with the full order structural FE equations. Since

cantilevered modes are used for generation of the generalized aerodynamic matrices, and since the initial shape (initial

angle of attack) cannot be captured by these cantilevered modes, an addition initial shape mode is added to the set of

modes used for aerodynamics with DLM. Fig. 3 shows that the results obtained by using Method II for time domain

simulation are slightly different than the ones obtained by using Method I. However, the simulations both converge to

the same steady value (sub-critical speed: V1 ¼ 21m=s). When a post-flutter speed (V1 ¼ 27m=s) is considered, a limit

cycle oscillation (LCO) is observed. Methods I and II for time domain aeroelastic simulations capture this behavior

well. Figs. 4 and 5 show the LCO oscillations. Comparison with reference results is presented in Demasi and

Livne (2009, 2007a). The two approaches for time domain simulations predict the same amplitudes and frequencies

of LCO.
Fig. 3. Delta wing. Transient response for a sub-critical speed (V1 ¼ 21m=s). Time domain simulation conducted by using Methods I

and II. The aerodynamic generalized matrices are approximated by using 20 modes. Six lag terms have been used. The reference

damping matrix is defined by using 20 modes. Modal Basis 1 has been used and the last mode adopted for the aerodynamics has been

replaced with the perturbed shape corresponding to an angle of attack a ¼ 1�; zi ¼ 0:03, Ntime step ¼ 8.
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Fig. 4. Delta wing. Post-flutter LCO. V1 ¼ 27m=s. Time domain simulation conducted by using Methods I and II. The aerodynamic

generalized matrices are approximated by using 20 modes. Six lag terms have been used. Reference damping matrix defined by using 20

modes. Modal Basis 1 has been used and the last mode adopted for the aerodynamics has been replaced with the perturbed shape

corresponding to an angle of attack a ¼ 1�; zi ¼ 0:03, Ntime step ¼ 8.

Fig. 5. Delta wing. Post-flutter LCO speed. V1 ¼ 27m=s. Time domain simulation conducted by using Method I and Method II. The

aerodynamic generalized matrices are approximated by using 20 modes. Six lag terms have been used. Reference damping matrix

defined by using 20 modes. Modal Basis 1 has been used and the last mode adopted for the aerodynamics has been replaced with the

perturbed shape corresponding to an angle of attack a ¼ 1�; zi ¼ 0:03, Ntime step ¼ 8.
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7.4. Dynamic aeroelasticity of the joined wing: method II compared with method I

The present capability is valid for both planar and non-planar cases, and, actually for any 3-D configuration for

which general 3-D linear unsteady aerodynamic modeling methods apply, including linearized CFD generalized

aerodynamic forces (GAFs) about reference configuration shapes. Results at Mach number zero for the 3-D

joined-wing configuration shown in Fig. 2 are presented in the next figure. Linear flutter speed for this configuration is

33.68m/s. A sub-critical case is analyzed (V1 ¼ 21m=s). Fig. 6 shows that for that speed the convergence (after initial
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Fig. 6. Joined wing. Transient response for a sub-critical speed (V1 ¼ 21m=s). Time domain simulation conducted by using Methods

I and II. The aerodynamic generalized matrices are approximated by using 30 modes. Six lag terms have been used. The reference

damping matrix is defined by using 30 modes. Modal Basis 4 has been used and the last mode adopted for the aerodynamics has been

replaced with the shape corresponding to a ¼ 1�; zi ¼ 0:03, Ntime step ¼ 8. The response is calculated at point P � a; 15
16

a; 100
381

a.

a ¼ 381mm. For this case V linear
F ¼ 33:68m=s and f linear

F ¼ 13:06Hz. The linear flutter has been calculated by using 20 modes.
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perturbation) to the steady state value obtained by nonlinear static aeroelastic analysis is relatively fast. Twenty modes

were used to generate generalized unsteady matrices for linear flutter analysis, while 30 modes were used to generate

aerodynamic matrices for the nonlinear aeroelastic cases. For the planar case (delta wing) the Methods I and II gave

similar results: convergence to the steady solution for sub-critical speeds, and same frequency and amplitude for post-

flutter speeds. The same happens in the non-planar JW case. However, the actual values obtained by using the two

approaches are slightly different in the JW case. For example, at time t ¼ 7:12� 10�2 s Method I gives

uzðtÞ=uz steady ¼ 1:311, whereas Method II gives uzðtÞ=uz steady ¼ 1:347.
8. Methods I and II: a theoretical comparison

8.1. Why the two approaches give slightly different results

The two approaches have been shown to converge to the same steady solution for sub-critical cases and predict the

same LCO amplitudes and frequencies for the post-flutter speed (delta wing case). But the corresponding time

simulations of the two methods are not coincident. The equations on which the two approaches are based are

equivalent, starting from the same equation (Eq. (8)). Method I does not introduce any auxiliary variables and leads to

expression for the aerodynamic loads (Eq. (11)) which contains convolution integrals in the time domain.

Method II derivations start from the same equation in the Laplace domain (Eq. (8)), and with the introduction of

auxiliary variables (the so-called lag state variables) leads to the writing of the aerodynamic loads with some auxiliary

equations for the lag state variables (see in particular Eq. (28)). It is the initial conditions used to perturb the systems for

a given and constant speed, as selected here, that are not mathematically equivalent. To demonstrate that consider the

aerodynamic loads and the initial conditions at instant t ¼ 0 for the case in which Method I is used:

Method I

0Lunsteady ¼ A%

2 �
0 €U þA%

� 0U ;
0 _U ¼ 0; 0U ¼ x pert � xa¼0;
0 €U ¼ ½M �A%

2 �
�1 � ½0Pext þA%

� 0U �:

8>>><
>>>: (60)
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In the case of Method II the aerodynamic loads and initial conditions are

Method II

0Lunsteady ¼ A%

2 �
0 €U þA%

0 �
0U ;

0 _U ¼ 0; 0U ¼ x pert � xa¼0;
0 €U ¼ ½M �A%

2 �
�1 � ½0Pext þA%

0 �
0U �;

0li ¼
0 _li ¼ 0; 0 €li ¼ Ci � ½M �A%

2 �
�1 � ½0Pext þA%

0 �
0U �; i ¼ 1;N lag=2:

8>>>>>><
>>>>>>:

(61)

The two sets of initial conditions are not identical. It is sufficient to compare the expressions of the nodal acceleration
0 €U at the instant t ¼ 0: in one case matrix A% is used (Method I) and in the other case matrix A%

0 is used (Method II).

The two nodal initial acceleration vectors are then not identical because A%aA%

0 (see in particular Eq. (9)).

The difficulty in specifying identical initial conditions for the two methods is associated with the somewhat peculiar

problem of starting the time simulations discussed here. Since the goal in linear flutter simulations is to study the

dynamic behavior of the system as flight speeds are increased, the initial perturbation used to excite the system are not

particularly important as long as they can excite all modes of dynamic behavior. In the nonlinear LCO case, magnitudes

of initial perturbations that will lead or not lead to LCO at given speeds are important. The question is how to start the

time integration of the equations at a given flight speed. In the static aeroelastic case, simulation can start at zero speed,

and the speed then gradually is increased to its desired value (Demasi and Livne, 2009, 2007a). In the unsteady case, the

simulation can start at zero speed, and then time stepping and speed-increases to the desired speed can be done

simultaneously. This will require very long simulations. The unsteady simulation can start with the speed already set at

the desired level with the system at some initial angle of attack to the flow. This means a step force input to the system

(as if a wind tunnel is started suddenly at some finite dynamic pressure—the Wagner problem). Initial accelerations of

the structural nodes now becomes important, and slight differences in assumptions about initial values of the unsteady

aerodynamic lag states can lead to differences in the results. Methods I and II presented here seek to simplify the

associated formulations regarding initial conditions for the unsteady aerodynamic lag terms, and, thus, lead to

differences in the way acceleration initial conditions are accounted.

8.2. Advantages and disadvantages of the two approaches

8.2.1. Method I

With Method I N lag þ 3 aerodynamic matrices:A%,A%

1 ,A
%

2 and the N lag lag matricesA%

2þi are stored and read from file

(i is an index which varies from 1 to N lag). When the iterations are performed, it is also necessary to continuously update the

nodal variables tþDtU ;
tþDt _U and

tþDt €U and N lag auxiliary variables used for the calculation of the time domain integrals

(Demasi and Livne, 2009, 2007a) indicated with tþDtI i. The aerodynamic and dynamic contributions to the effective stiffness

matrix are calculated a priori. So, the additional matrices KT
system
aero and KT

system
dyn need to be stored. The dynamic and

aerodynamic contributions (tþDtPdyn and
tþDtPaero, respectively) to the applied loads need also to be updated at each iteration.

The size of the time step affects also the accuracy used in the calculation of the lag integrals.

8.2.2. Method II

There are no integrals in the time domain that have to be calculated. Unlike Method I, the number of Roger lag terms

N lag has to be an even number. As in Method I, with Method II N lag þ 3 aerodynamic matrices have to be stored: A%

0 ,

A%

1 , A
%

2 , A
%

1þ2i and A%

2þ2i (notice that in the second approach it is always i ¼ 1;N lag=2). We need to update the nodal

variables but in addition to this we need to update the lag state variables and their first and second time derivatives.

More in detail, we need to update tþDtli;
tþDt _li and

tþDt €li. But we no longer need to update the variables tþDtI i which

were used in the first approach. In addition to the quantities KT
system
aero and KT

system
dyn we also need to calculate a priori the

matrices KT
%

aero and KT
2 system
i aero . With the second approach we need to update the loads tþDtPdyn,

tþDtPaero and the new

quantities tþDtPi aero and
tþDtP%

aero. Note that with Method II the analytical expressions used for the quantities tþDtPaero,

KT
system
aero are different from the corresponding quantities used in Method I for time domain simulations. More memory,

then, is required with Method II to store the extra variables and matrices needed to carry out the iterative procedure.
9. Conclusion and future work

Two methods for coupling linear unsteady modally based aerodynamic codes and geometrically nonlinear FEM

simulation programs have been presented. These methods allow existing linear aerodynamic panel codes (such as
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doublet lattice, PANAIR, or ZAERO) to be integrated with reliable Finite Element structural capabilities such as

NASTRAN or ANSYS for the analysis of wing/body configurations which portray important structural geometric

nonlinearities (e.g., Joined Wings).

Method I requires the calculation of time domain integrals, whereas Method II converts unsteady aerodynamic time

domain equations to second order and couples them directly with the second order structural equations. Method II does

not require convolution time integrals. With Method II, however, there is an increase in computer memory required to

store the extra variables needed to carry out the iterative procedure (Newton–Raphson and Newmark’s method). Both

Methods show excellent convergence to steady aeroelastic solutions in cases of sub-critical flight speed. When present,

LCO amplitudes and frequencies calculated by using the two different approaches coincide and correlate well with

experiments, in cases where experimental results exist. A decision to simplify treatment of initial conditions in the case

of step variation of flight speed leads to slight differences in time histories between simulations with the two methods

when a non-zero initial speed is imposed.

Modal-based generalized unsteady aerodynamic force matrices for linear aerodynamics as well as linearization of

CFD loads about reference states lead to accurate prediction of aeroelastic behavior when the nature of configuration

shape deformations is global and can be captured by a small set of appropriate mode shape vectors. When significant

local deformation changes can appear on structural surfaces exposed to flow, such as sudden bulging of a small surface

panel due to buckling or local buckling of wing areas subject to intense in-plane compression such as in joined-wing

configurations, a modal approach to unsteady aerodynamics has to be abandoned and a full order approach using fine

aerodynamic panel meshing has to be used. This will be the subject of a subsequent paper.
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